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Introduction

Background

▶ PhD student at the University of Washington

▶ Data Scientist at Shifted Energy

Challenges

▶ Cold Start Problem (new buildings have no data)
▶ Small-Data Regime

▶ 720 observations for each building (1 month of data)
▶ 30 “hour of the day” observations (12am, 1am, ...)
▶ 4 “hour of the week” observations (Mo 12am, Mo 1am, ...)



Seasonal Average - Incremental Formula
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Improvements

All forecasts use the seasonal average with improvements:

(1) initialization

(2) filter out large values (not clipping)

(3) blend with the most recent observation

(4) load-type specific ideas

For example,

1. EEP: seasonal average + (1) + (2)

2. Emissions: seasonal average + (1) + (3)



Improvements (1) - Initialization

Let x0 be prior estimate, τ be prior weight
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Derive x0 from training data or schema, τ is a hyperparameter.



Improvements (2) - Filtering

Filter large spikes from EEP and DHW.



Improvements (3) - Blend most recent observation

Correct the level of the forecast

x̂n+h = x̄n+h + αh(xn − x̄n)

where h is the horizon and α is the blending weight (roughly 0.93).



Improvements (4) - Cooling
Decompose into temperature-dependent and time-dependent parts

f_temp = c * gumbel(a * temperature + b)

forecast = MA(actual - f_temp) + f_temp



Improvements (4) - Domestic Hot Water Heating

Adjust forecast depending on cumulative daily demand:

▶ if demand is higher than normal, then decrease forecast

▶ if demand is lower than normal, then increase forecast

1 + a*tanh(b*(predicted_demand - actual_demand))



Improvements (4) - Solar

▶ First 24 hours: 1-layer NN with irradiance forecast

▶ Next 24 hours: blend 24-hour ahead forecast with the average
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